Elasto-Capillary Folding Using Stop-Programmable Hinges Fabricated by 3D Micro-Machining

نویسندگان

  • Antoine Legrain
  • Erwin J. W. Berenschot
  • Niels R. Tas
  • Leon Abelmann
  • Yogendra Kumar Mishra
چکیده

We show elasto-capillary folding of silicon nitride objects with accurate folding angles between flaps of (70.6 ± 0.1)° and demonstrate the feasibility of such accurate micro-assembly with a final folding angle of 90°. The folding angle is defined by stop-programmable hinges that are fabricated starting from silicon molds employing accurate three-dimensional corner lithography. This nano-patterning method exploits the conformal deposition and the subsequent timed isotropic etching of a thin film in a 3D shaped silicon template. The technique leaves a residue of the thin film in sharp concave corners which can be used as an inversion mask in subsequent steps. Hinges designed to stop the folding at 70.6° were fabricated batchwise by machining the V-grooves obtained by KOH etching in (110) silicon wafers; 90° stop-programmable hinges were obtained starting from silicon molds obtained by dry etching on (100) wafers. The presented technique has potential to achieve any folding angle and opens a new route towards creating structures with increased complexity, which will ultimately lead to a novel method for device fabrication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Three-dimensional Microstructures Using Capillary Forces

In this paper we describe the fabrication of threedimensional microstructures by means of capillary forces. Using an origami-like technique, planar structures are folded to produce 3D-objects. To this purpose use is made of capillary interactions and surface tension forces. Capillarity is a particularly effective mechanism since it becomes dominant at small scales (where surface tension forces ...

متن کامل

Assembling 3 D MEMS Structures by Folding , Aligning and Latching 2 D Patterned

The techniques used in the fabrication of micro-electro-mechanical systems (MEMS) were adopted from the integrated circuits (IC) industry and are mostly limited to patterning thin films on a flat substrate. As a consequence, micro-machined devices mostly comprise sets of flat two-dimensional (2D) membranes with etched patterns and undercuts that enable them to serve their intended functions. Ho...

متن کامل

Elastocapillary Folding of Three Dimensional Micro-structures Using Water Pumped through the Wafer via a Silicon Nitride Tube

In this paper we present the first investigation of a batch method for folding of threedimensional micrometer-sized silicon nitride structures by capillary forces. Silicon nitride tubes have been designed and fabricated using DRIE at the center of the planar origami patterns of the structures. Water is brought to the structures by pumping the liquid through the wafer via those tubes. Isolated m...

متن کامل

Elasto-capillarity: deforming an elastic structure with a liquid droplet.

Although negligible at macroscopic scales, capillary forces become dominant as the sub-millimetric scales of micro-electro-mechanical systems (MEMS) are considered. We review various situations, not limited to micro-technologies, where capillary forces are able to deform elastic structures. In particular, we define the different length scales that are relevant for 'elasto-capillary' problems. W...

متن کامل

Let's twist again: elasto-capillary assembly of parallel ribbons.

We show the self-assembly through twisting and bending of side by side ribbons under the action of capillary forces. Micro-ribbons made of silicon nitride are batch assembled at the wafer scale. We study their assembly as a function of their dimensions and separating distance. Model experiments are carried out at the macroscopic scale where the tension in ribbons can easily be tuned. The proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015